SR9009, a synthetic compound originally linked to circadian rhythm modulation, has gained significant traction as a targeted treatment for prostate cancer (PCa). Unlike conventional therapies that focus on androgen receptor inhibition, SR9009 exerts its anticancer effects by targeting the LXRα/FOXM1 signaling axis, a crucial pathway in the aggressive PCS1 subtype of PCa. Experimental studies highlight its ability to suppress tumor cell migration, reduce colony formation, and induce apoptosis selectively in PCS1 cells. Notably, it spares normal prostate cells, suggesting a targeted therapeutic profile that minimizes off-target effects .
Xu, H., Zhang, J., Zheng, X., Tan, P., Xiong, X., Yi, X., Yang, Y., Wang, Y., Liao, D., Li, H., Wei, Q., Ai, J. and Yang, L., 2022. SR9009 inhibits lethal prostate cancer subtype 1 by regulating the LXRα/FOXM1 pathway independently of REV-ERBs. Cell Death & Disease.
Disclaimer: Information provided it this page is for general information only and does not substitute for professional medical advice.
For detailed information about STENABOLIC by Spectre Labs, consult with your doctor or healthcare professional.
Xu, H., Zhang, J., Zheng, X., Tan, P., Xiong, X., Yi, X., Yang, Y., Wang, Y., Liao, D., Li, H., Wei, Q., Ai, J. and Yang, L., 2022. SR9009 inhibits lethal prostate cancer subtype 1 by regulating the LXRα/FOXM1 pathway independently of REV-ERBs. Cell Death & Disease.
Xu, H., Zhang, J., Zheng, X., Tan, P., Xiong, X., Yi, X., Yang, Y., Wang, Y., Liao, D., Li, H., Wei, Q., Ai, J. and Yang, L., 2022. SR9009 inhibits lethal prostate cancer subtype 1 by regulating the LXRα/FOXM1 pathway independently of REV-ERBs. Cell Death & Disease.
Xu, H., Zhang, J., Zheng, X., Tan, P., Xiong, X., Yi, X., Yang, Y., Wang, Y., Liao, D., Li, H., Wei, Q., Ai, J. and Yang, L., 2022. SR9009 inhibits lethal prostate cancer subtype 1 by regulating the LXRα/FOXM1 pathway independently of REV-ERBs. Cell Death & Disease.